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Angular Momentum

• Angular momentum about a point O is the 
moment (HO)of the particles linear 
momentum about O.

• Magnitude of Angular Momentum:

• The sense of the rotation of mv can 
be obtained using the right hand 
rule
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Angular Momentum - Vector

• If a particle moves along a space curve then 
the angular momentum (vector) can be 
determined using the vector cross product 
about O.

• The cross product is evaluated as the 
determinant of
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Moment of a Force Versus Angular 
Momentum

• From Newton’s 2nd law,

• Evaluating the moments

• Also

• Now
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Moment of a Force Versus Angular 
Momentum

• So the resultant moment about point O of all forces 
acting the particle equals the rate of change of the 
particle’s angular momentum about point O.

• Interestingly, this is the same result of Eqn 15-1 
(definition of linear momentum) 

• Eqns 15-1 and 15-15, are alternate ways of 
expressing Newton's 2nd law. We shall see how this 
enables solve problems later in the topic rigid bodies



System of Particles

• We may extend the previous analysis to a system of 
particles.

• Consider the ith particle subject to a resultant 
external force Fi, and a resultant internal force fi

• From Eqn 15-15, the rate of change of angular 
momentum of the ith particle about is

• Summing for all particles in this
system
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System of Particles

• Since internal forces will essentially cancel each 
other out,

• So for the system

• In other words, the sum of moments about O of all 
the external forces acting on the system of particles 
equals the rate of change of the total angular 
momentum of the system about O.
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Principle of Angular Impulse and 
Momentum

• Let us rewrite Eqn 15-15 in the form
and integrate from time t1 to t2 which have 
corresponding angular momenta (Ho)1 and (Ho)2

• This is the principle of angular impulse and 
momentum.

• The second term on the LHS is the angular impulse.
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Angular Impulse

• Angular impulse 

• By extension, we may apply the principle of angular 
momentum to a system of particles

• where
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Angular Momentum

• We may rewrite a vector formulation of Eqn 15-3 and 
Eqn 15-18 using the impulse and momentum 
principles
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Angular Momentum – Scalar 
Formulation

• Eqn 15-21 may be expressed in x, y, and z
components. For the x – y plane we have the 
following
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Conservation of Angular Momentum
• When the angular impulses on a particle are zero 

from time t1 to time t2, from Eqn 15-18,

• For a system of particles

• The above equations represent the principle of 
conservation of angular momentum.

• If no external impulse acts on a particle, linear and 
angular momentum will be conserved. In some cases 
angular momentum will be conserved by linear 
momentum may not. E.g central force motion
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Questions



Steady Flow of Fluid Stream

• We shall now apply impulse and momentum 
principles to fluid flowing through a pipe, under the 
following conditions:

1. The mass of fluid flowing into and out of the control 
volume are equal. 

2. The size and shape of the control volume coincides 
with the internal boundaries and openings of the 
pipe.

• If the above are met the fluid has steady flow.
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• Consider a small amount of fluid of mass dm about 
to enter the control volume at A with vA at time t

• Due to steady flow the same amount of fluid that 
entered over dt will leave at B, with vA leaving at B 

• The momenta of the fluid entering and leaving will 
be dm vA and dm vB respectively

• Momentum of the fluid inside control volume 
remains constant over dt

Steady Flow of a Fluid Stream
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Steady Flow of a Fluid

• The resultant external force on the pipe stream (from 
the reactive force from the pipe wall) produces an 
impulse  Σ F dt

• Applying the principle of linear impulse and 
momentum

• r, rA, and rB denote the position vectors of the 
centers of the control volume, and openings at A and 
B respectively. Therefore by principle of angular 
impulse and momentum
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Steady Flow of a Fluid

• Diving both sides by dt

• The term dm/dt is called the mass flow
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Steady Flow of a Fluid

• AA denotes the cross section area of the control 
volume at A. Let ρA denote the density of the fluid at 
A. 

• For an incompressible fluid, the continuity of mass 
requires that                               or

• And likewise for any other point of interest. 
Therefore, in general

• Q is called the discharge, or 
volumetric flow rate
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Questions



Propulsion With Variable Mass

• Consider a rocket of mass m at an instant 
in time, moving with velocity v.

• At the same instant an amount of mass me

is expelled with velocity ve.

• The control volume in this case is that of 
both m and me.

• During an interval dt, velocity increases from v to 
v + dv, due to loss of mass dme that is ejected. 
However ve remains constant 
from the view of a stationary 
observer.
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Propulsion with Variable Mass

• Applying the Principle of impulse and momentum to the 
control volume between time t and time t + dt,

• or

• Now                      and dividing by dt

• The velocity of the rocket as observed from a rider 
“riding’ on the exhaust stream  is vD/e = v + ve , therefore
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Propulsion with Variable Mass 

• Note that the second term on the RHS is the rate of 
mass ejection  

• Eqn 15-28 is the famous Tsiolkovsky rocket equation 
or ideal rocket equation, after Konstantin Tsiolkovsky
(Russia) who published it in 1903.

Hermann Oberth Robert Goddard
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Propulsion with Variable Mass

• Consider  a rocket of weight W moving upwards with 
velocity v, subject to atmospheric drag FD. 

• If the control volume is that associated with 
the mass of the rocket and the mass of 
ejected gas me

• From Eqn 15-28

• The last term on the RHS is called the 
thrust (T), it is the equal but opposite reaction 
of the force exerted by ejecta on the surroundings
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Propulsion with Variable Mass

• Also we know that dv/dt = a, so

• Or 

• So yes, Newton’s 2nd law applies 
and is consistent with the ideal
rocket equation.
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Control Volume that Gains Mass

• In some applications the control volume will 
rather gain mass

• Example: scoop or blade of mechanical 
excavator

• The analysis is identical save 
the increase in mass rather 
than the decrease as 
previously learned



Control Volume that Gains Mass

• If vi is the velocity of injected 
mass and v > vi . 

• Using the same  procedure

• Resulting in
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Control Volume that Gains Mass

• dmi/dt is the rate of mass injected into the 
device.

• The last term on the RHS represents the 
magnitude of force (R) which the injected 
mass exerts on the device, so 
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Questions


