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Central-Force Motion

* |f a particle travels under the influence of a
force that has a line of action directed towards

a fixed point, then the motion is called
central-force motion

 Examples: planetary motion, electrostatic
forces, centrifuge




Central-Force Motion

* Consider a particle of mass m acted
on by a force F, with center O

e Using the Equations of Motion for
Cylindrical Coordinates, it can be
shown that (derivation omitted
here, student please review):

H r _dzr déo 2
F.=ma, =>-F =m ——-r| — (13-11a)
/e/'\ Z r r r dtz (dtj

Free body

F diagram d29 dr dH
: ZFQ =ma, = 0= m[r it —ZEEJ (13-11b)




Central-Force Motion

We may re-write Eqn 13-11b in the form

el
r| dt dt
then by integration

, d6 _h (13-12)
dt

where h is the constant of integration



Central-Force Motion

* Since the particle sweeps through angle d0 in
time interval dt

dA=1r’do
d_A_l do h
dt 2! dt 2

* dA/dtis called the areal velocity. It remains
constant for a particle in central-force motion

* This means the particle sweeps through equal
areas in equal time as it travels along the path



Central-Force Motion

* Let us derive the path of motion r as a
function of O

* By the chain rule (Calculus 101 !)
dr drd@ h dr
dt dodt r°dé

dzr_d(h drj_d(h drjd@_ d(h dr) h
dt> dt{r?de) do\r*de)dt |do\r’de)|r?

* Let us denote l:gg
"



Central-Force Motion

So that we obtain | ,
ﬂ:_hZé;Z d 5
do?

dt*
also the square of Eqn 13-12 becomes

doy ...
(aj‘“

Substituting the above in Egn 13-11a we
obtain a differential equation which can be
solved to determine the path of motion

d*& F d?& F

—h?&? —h*&°>=—— OR + & =

s do* d m do* d mh®&?
(13-14)




Orbital Mechanics

* Consider a space vehicle of mass m launched
into free-flight orbit with initial velocity v..

* Assume v_ acts parallel to the tangent to the
earth surface

* Neglect gravitational attractions of sun and
moon

Power flight
trajectory



Orbital Mechanics

e At the instant just after release into free flight
the only force acting on it is the gravitational
attraction from the earth

* According to Newton’s law of gravitation;

M.m

r
* To obtain the orbital path, substitute into Egn

13-14

d?& GM,
doz "= he




Orbital Mechanics

* The above differential equation can be solved
as the sum of the complementary and
particular solutions (Review your Differential
Equations )

e Solutionis:

GM,
2 (13-16)

§=%=Ccos(6'—¢)+




Orbital Mechanics

* Egn 13-16 is the equation of a conic section
[student, please review your Pre-Cal materials]

* By definition, Eccentricity

FP g
€= ﬁ — directrix
A
r =e(PA)
r=e[p—rcos(@—¢)]
or
1=icos(¢9—¢)+i X,/

r p ep b



Orbital Motion

 Comparing with Egn 13-16;

p = 1 (13-17)
C
and
Ch?
e = (13-18)
GM,

* Provided 0O is measured from the x-axis which
is perpendicular to the directrix (and an axis of
symmetry), then @ =0, and Eqn 13-16 reduces

to 1 GM
P C cos( @) + - . (13-19)




Orbital Motion

* The constants C and h are determined from the
boundary conditions at the end of the power-
flight trajectory

* At the beginning of free-flightr=r_,v=v_;
if 0 =® =0, then from curvilinear motion-
cylindrical components

do
Yo~ FO[EJ

dé
_ 200
h=r dt or h=r,Vv, (13-20)




Orbital Motion

* Substituting Eqn 13-20,r=r_, 6 =0, into
Egn 13-19

1 GM
C = —[1— 2 j (13-21)
rO If-OVO

 The equation for the free-flight trajectory
therefore becomes

izi[l—GMejcose+GMe (13-22)

2 2
r o Vo Vo




Orbital Motion

 The type of path traveled by the space vehicle
depends on the value of the eccentricity

e=0 = circle
e=1 — p arabola
) (13-23)
e<l — ellipse

e>1 = hy perbola

e [Students, plug in these values to the appropriate
equations and verify these conclusions]



Orbital Motion

e Parabolic path: The spacecraft is on the

oorderline of never returning to its starting
noint.

* The initial velocity required for a parabolic
path is called the escape velocity

* Plugginge=1, Eqns 13-21 and 13-22 into Egn

1318;
\/ZG M,
V, = (13-24)

Io




Orbital Motion

* Similarly, for Circular Motion

\/GMe
V., = (13-25)

C r_o

* Note that v, 2 v, will result in vehicle escaping
earth’s gravitational pull
* On the other hand if v, < v_ the vehicle will fail

to reach orbit, renter earth atmosphere, and
crash or burn up in the heat of reentry



Elliptical Orbit

e All planets and most artificial satellites orbit in
an elliptical path.

* For the space craft the minimum distance to
the center of the earth (with earth at a focus
of the ellipse), r, can be found
by plugging 6 = 0 into
Egn 13.22

e Using 6 = 180° we get
the max distance r,

x
B a >




Elliptical Orbit

:ro

(13-26)

* r,is called the perigee (generally periapsis)

I

r, = >
° (2GM,/rpvg) -1

(13-27)

* r is called the apogee (generally apoapsis)

* Half the length of the major axis

a=

r,+r,

2

(13-28)



Elliptical Orbit

e |t can also be shown that

b=_/r.r,

(13-29)

(Students, verify on your own)

* By integration, the area of the ellipse is

A= 7ab :%(rIo +1,)/" L

(13-30)




Elliptical Motion

* The areal velocity was defined in Eqn 13-13 as

dA h dA h
- - or - - J‘_
dt 2 dt 2

_hT
2

— A

where T is the time to make one orbital
revolution (aka orbital period).

* From 13-30:

T = % (r, +1,), /rpra (13-31)




Laws of Planetary Motion

 The theory developed in this chapter was first

presented by Johannes Kepler in 1621, 6 clear
decades before Newton’s Principia

* Kepler developed the laws of planetary
motion over 20 years by studying planetary
data collected by his mentor Tycho Brahe




Laws of Planetary Motion

* Planets travel in elliptical orbits with the sun at
a focus of the ellipse (Eqn 13-22)

* Planets travel in an orbit such that they sweep
equal areas in equal time intervals (Egn 13-13)

 The square of the period of any planet is
directly proportional to the cube of the major
axis of its orbit (Egns 13-31, 13-19, 13-28, 13-
29)
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