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Central-Force Motion

• If a particle travels under the influence of a 
force that has a line of action directed towards 
a fixed point, then the motion is called 
central-force motion 

• Examples: planetary motion, electrostatic 
forces, centrifuge



Central-Force Motion

• Consider a particle of mass m acted 
on by a force F, with center O

• Using the Equations of Motion for 
Cylindrical Coordinates, it can be 
shown that (derivation omitted 
here, student please review):
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Central-Force Motion

We may re-write Eqn 13-11b  in the form

then by integration

where h is the  constant of integration
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Central-Force Motion

• Since the particle sweeps through angle dθ in 
time interval dt

• dA/dt is called the areal velocity. It remains 
constant for a particle in central-force motion

• This means the particle sweeps through equal 
areas in equal time as it travels along the path
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Central-Force Motion

• Let us derive the path of motion r as a 
function of θ

• By the chain rule (Calculus 101 !)

• Let us denote 
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Central-Force Motion

• So that we obtain

• also the square of Eqn 13-12 becomes

• Substituting the above in Eqn 13-11a we 
obtain a differential equation which can be 
solved to determine the path of motion
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Orbital Mechanics

• Consider a space vehicle of mass m launched 
into free-flight orbit with initial velocity vo. 

• Assume vo acts parallel to the tangent to the 
earth surface 

• Neglect gravitational attractions of sun and 
moon
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Orbital Mechanics

• At the instant just after release into free flight 
the only force acting on it is the gravitational 
attraction from the earth

• According to Newton’s law of gravitation;

• To obtain the orbital path, substitute into Eqn
13-14
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Orbital Mechanics

• The above differential equation can be solved 
as the sum of the complementary and 
particular solutions (Review your Differential 
Equations )

• Solution is:
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Orbital Mechanics

• Eqn 13-16 is the equation of a conic section 
[student, please review your Pre-Cal materials]

• By definition, Eccentricity
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Orbital Motion

• Comparing with Eqn 13-16;

and 

• Provided θ is measured from the x-axis which 
is perpendicular to the directrix (and an axis of 
symmetry), then Ф = 0, and Eqn 13-16 reduces 
to
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Orbital Motion

• The constants C and h are determined from the 
boundary conditions at the end of the power-
flight trajectory

• At the beginning of free-flight r = ro, v = vo;        
if θ = Ф = 0, then from curvilinear motion-
cylindrical components
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Orbital Motion

• Substituting Eqn 13-20, r = ro, θ = 0, into 
Eqn 13-19

• The equation for the free-flight trajectory 
therefore becomes
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Orbital Motion

• The type of path traveled by the space vehicle 
depends on the value of the eccentricity

• [Students, plug in these values to the appropriate 
equations and verify these conclusions]
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Orbital Motion

• Parabolic path: The spacecraft is on the 
borderline of never returning to its starting 
point.

• The initial velocity required for a parabolic 
path is called the escape velocity

• Plugging e = 1, Eqns 13-21 and 13-22 into Eqn
1318;
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Orbital Motion

• Similarly, for Circular Motion

• Note that vo ≥ ve will result in vehicle escaping 
earth’s gravitational pull 

• On the other hand if vo < vc the vehicle will fail 
to reach orbit, renter earth atmosphere, and 
crash or burn up in the heat of reentry
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Elliptical Orbit

• All planets and most artificial satellites orbit in 
an elliptical path.

• For the space craft the minimum distance to 
the center of the earth (with earth at a focus 
of the ellipse), rp can be found 
by plugging θ = 0 into
Eqn 13.22

• Using θ = 180o we get
the max distance ra
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Elliptical Orbit

• rp is called the perigee (generally periapsis)

• ra is called the apogee (generally apoapsis)

• Half the length of the major axis
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Elliptical Orbit

• It can also be shown that 

(Students, verify on your own)

• By integration, the area of the ellipse is
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Elliptical Motion

• The areal velocity  was defined in Eqn 13-13 as

where T is the time to make one orbital 
revolution (aka orbital period). 

• From 13-30:
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Laws of Planetary Motion

• The theory developed in this chapter was first 
presented by Johannes Kepler in 1621, 6 clear 
decades before Newton’s Principia

• Kepler developed the laws of planetary 
motion over 20 years by studying planetary 
data collected by his mentor Tycho Brahe



Laws of Planetary Motion

• Planets travel in elliptical orbits with the sun at 
a focus of the ellipse (Eqn 13-22)

• Planets travel in an orbit such that they sweep 
equal areas in equal time intervals (Eqn 13-13)

• The square of the period of any planet is 
directly proportional to the cube of the major 
axis of its orbit (Eqns 13-31, 13-19, 13-28, 13-
29)
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