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Kinematics

The objective of kinematics is to characterize the 
following properties of  an object at an instant 
during its in motion:

• Position

• Velocity

• acceleration

Sir Isaac Newton



Kinematics

• Assumptions in kinematics :

– the object is negligible size and shape (particle)

– The mass is not considered in the calculations

– Rotation of the object is neglected

• We shall look at the kinematics of an object 
moving in a straight line. We call this 
Rectilinear Kinematics



Rectilinear Kinematics: Continuous Motion

• Consider a particle in rectilinear motion from a 
fixed origin O in the S direction.

• For a given instant, s is the position coordinate of 
the particle

• The magnitude of s is the distance from the origin 
(in feet, meters or the relevant unit of measure)
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Rectilinear Kinematics: Continuous Motion

• Note that the position coordinate  would be 
negative if the particle traveled in the 
opposite direction according to our frame of 
reference

• Position is has a magnitude (distance from 
origin) and is based on a specific direction. It is 
therefore a vector quantity



Continuous Motion - Displacement

• Displacement is defined as the change in 
position
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Continuous Motion - Displacement

• Displacement is also a vector quantity 
characterized by a magnitude and a direction

• Note that distance on the other hand is a 
scalar quantity representing the length from 
an origin. 
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Continuous Motion – Average Velocity

• If the particle undergoes displacement s 
over a time interval t then the average 
velocity over this time interval
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Continuous Motion – Instant. Velocity

• If we were to take smaller and smaller values 
of t then s would also get smaller and 
smaller. 

• At some point would no longer be an interval 
but a point in the time dimension (instant). 
The associated velocity is called the 
instantaneous velocity



Continuous Motion – Instant. Velocity

• By definition, instantaneous velocity

• Alternately represented as 
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Continuous Motion – Velocity

• Velocity is a vector quantity

• If we had moved to the left, the velocity 
would be a negative value

• The magnitude of the velocity is called speed

• The units of velocity (and speed) include ft/s, 
mph (miles per hour), m/s, kph (kilometers 
per hour)



Continuous Motion – Average Speed

• Average speed is a positive scalar value 
defined as the total distance divided by the 
time elapsed
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Continuous Motion – Average Speed

• Consider the following motion that occurs 
over a time interval t

• but
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Continuous Motion - Acceleration

• If the velocity at two instances is known then 
can obtain the average acceleration of the 
object during the time interval t as
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Continuous Motion - Acceleration

• If we reduce t to an infinitesimally small 
interval (aka instant), we get the 
instantaneous acceleration

or

• We can see that acceleration is a vector 
quantity
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Continuous Motion - Acceleration

• Commonly used units: ft/s2, m/s2, etc

• Substituting Eqn (2) in Eqn (1);

• From Eqn (1) and Eqn (2) if velocity is 
constant, then a = 0

• If v’ < v , then we will have a negative value of 
acceleration. This is called deceleration
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Continuous Motion - Acceleration

• From Eqn (1) we can write

• From Eqn (2)

• Equating the above
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Equations of Motion: Under Constant 
Acceleration

Consider the following:

• our acceleration to be constant, i.e. a = ac

• at t = 0, v = v0, and s = s0

• From Eqn (2)

• Rearranging and integrating
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Motion Under Constant Acceleration

• Solving the definite integral, we obtain 
velocity as a function of time:

• Substituting Eqn (4) into Eqn (1)
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Motion Under Constant Acceleration

• we obtain position as a function of time:

• We can rearrange Eqn (4) as 

and substitute in Eqn (5)
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Motion Under Constant Acceleration

• We obtain velocity as a function of position
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How Did That Go ?

• Examples



Rectilinear Kinematics

Erratic Motion

Joseph Louis Lagrange



Overview

• Erratic Motion

• Graphical approach

• Sample problems

Robert H. Goddard (1926)
Rocket pioneer



Erratic Motion
• When the motion of an object is erratic, we 

cannot use the single continuous function to 
describe its kinematics

• In other  words the acceleration
is not constant

• Series of functions have to be 
used to specify the motion over 
different time intervals

• In general graphs are used to 
facilitate the calculations

Pierre-Simon Laplace



Velocity = Slope of s – t graph at time t
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Acceleration = Slope of v – t graph at 
time t
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Change in velocity from a – t graph
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Displacement from v – t graph
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Graphs of v – s & a – s (Velocity)
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Graphs of v – s & a – s (Acceleration)
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How Did That Go ?

• Examples


